
Computability on the Interval Space: A
Dom"ain Approach

Benjamín Callejas Bedregal and Benedito Melo acióly

Departamento de Informática e Matemática Aplicada - DIMAp

Universidade Federal doRio Grande do Norte- UFRN

Campus Universitário- Lagoa I\ova, :\"atal-RN, Brasil

bedregal@dimap.ufrn.br and bma@dimap.ufrn.br

Abstract

The effectively given continuous domains aims characterize the computable
functions (as opposed to the merely continuous ones) and the computable el
ements of types represented by continuous domains. In this paper we show
that computability on arbitrary effectively given continuous domain depends
strongly u pon. the Church-Turing computability (classical computability on
countable sets) on a countable base. In order to introduce the notion of com
putability on the interval space we need the concepts of effectively given con
tinuous domain. In this approach, several desired properties of a computable
interval analysis are obtained.

Key words: Interval Analysis, Domain Theory, Continuum Computability.

1 Introduction

Scientific computation is mainly directionated to solutíon of numerical problems.
Of course convincing theoretical foundations are indispensible for computable anal
ysís. Very different approaches have been used to ínvestigate, from a constructive
standpoint, concepts arising in real analysis such as real numbers, limits, derivatives
and measure. An ímportant dífference among these approaches líes in the way real
numbers are represented [Gia93]. In the notion of computable real functions given
by Grzegorczyk's in [Grz57] is used the concept of computable operators on the
set of natural numbers sequences. Thís notion was ínvestigated and generalized by
[Wei95]. In his approach an approximatíon of the output with arbitrary precísion

107

is computed from a suitable approximation of the input [Bra95]. Another approach
was developed by Blum, Shub and Smale [BSS89]. Here real numbers are viewed as
entities and the computable functions are generated from a class of basic functions
(in a similar way to partial recursive functions). Although each of these approaches
has its merits, none of them has been accepted by the majority of mathematicians
or computer scientists.

Interval Mathematics is the branch of mathematics concerned with techniques
and methods to compute real objects (like real numbers, real functions, etc),
mantaining a rigorous analysis of approximation errors. In exact real computation
instead the result of a computation can be obtained with arbitrary precision, getting
rid of the unfortunate phenomenon of the "round-off-error" [Gia93]. Using Moore
interval arithmetic [Moo79] the round-off-error is known.

Computability on real intervals has not been object of specific studies, perhaps
because we can derive computability notions on real intervals extending naturally
the real functions to real interval ones. But, the natural extensions of the real
computability to real interval computability (for example, those obtained by the
extensions of real function to real interval functions as given by [Moo79]), beca use
their behaviour when restrict to the reals numbers is a real function (i.e. sending
degenera te intervals in degenerate intervals), do not consider severals functions, such
as f([a, b]) = [a- 1, b + 1], which are naturally computable. So it is necessary one
defines a computability notion in real interval spaces which does not depend on the
computabilty on real numbers.

In this paper, by using the well known domain theory, we will introduce an
internal notion of computability for interval analysis supporting the computability
properties which we would like that interval real functions had. For example, it is
desirable that the interval arithmetic be computable, also each computable function
be continuous, as well as that this notion of computability extends the computability
on reals, etc.

2 Basic Concepts in Domain Theory

Let D = (D, :S) be a partially ordered set (poset). A set .6. ~ D is called directed
if each of its finite subset has an upper bound, or equivalently, Va, b E .6. ::le E .6.
such that a :::; e and b :::; c. A poset D is directed complete (dcpo for short) if
each directed set .6. has a least upper bound or supremum (denoted by U .6.) and
a cpo if it has a least element. We say that a is way below b (denoted by a << b)
if for every directed set .6. such that b :::; U .6. then a :S x for sorne x E .6.. \Ne let
tx = {y E D : y~ x P. A dcpo D is called continuous if, for all x E D, the set tx

1 Analogously, we let tx = {y E D : x « y}

108

is directed and x = U d:x. A set B ~ D is a base of D if for each x E D, t:r n B is a
clirecte.d set with x = U tx n B. A dcpo is continuous if, and only if, it has a base.

_-\.n element a E D is compact if a « a. We will .denote the set of all compact
elements of D by D 0 . A continuous dcpo D is said to be algebraic if D0 is a base. A
subset of a poset is consistent if it has an upper bound in the poset. A continuous
dcpo is a continuous domain if it has a countable base and each consistent set has
a supremum. An algebraic dcpo is a Scott domain if the set of compact élements is
countable and each consistent set has a supremum.

Let D t.:Jnd E be dcpo's. _-\. function f : E --+ D is called continuous w.r.t. the
orders or snnplely continuous if it is monotonic (x :s; y implies j(x)· :s; j(y)) and
preserves least upper bounds (f(U ~)=U!(~)). .

A .. n element x of u. poset D is said total if x ¡;;;; y implies that x =y. Let Tot(D)

denotes the set of total elements of D.
There are several constructions on continuous domains, such as lifting, Cartesian

product, function space, etc. Let D = (D, ¡;;;;D) and E = (E, ¡;;;;E) be continuous
domains. The Cartesian product of D and E is the continuous domain D x E =

(D x E, C), where (x, y) ¡;;;; (x', Y') if, and only if, .r ¡;;;;D X' and y ¡;;;;p, Y' We will
abrevia te D x · · · x D by Dn. The function space from D to E is the continuous
domain D ---+ E = (ED, ¡;;;;) "\Yhere ED is the set of continuous functions from D to
E and f ¡;;;; g if, and only if, j(x) ¡;;;;E g(x) for each .rE D.

The partial orders are endowed with a topology, called Scott topology such that
in sorne sense the notion of continuous function and order coincide.

Definition 1 Let D = (D, ¡;;;;) be a dcpo. O ~ D is taken as open in the Scott

topology on D if

1. x E O and x ~ y then y E O

2. If ~ ~ D is a directed set and U ~ E O then ~ n O =/= 0

The Scott topology on dcpo D will be denoted by Tn.

The idea by defining this topology is as follows: 1) if information x suffices
to indicate that test O has succeeded, then any greater information is sufficient a
fortiori; 2) if the limit of a sequence of better ancl better approximations passes
a test O, then sorne of the approximants already passes. The last requirement is
connected with the idea that open sets correspond to finitary tests.

Proposition 2 [Smy92] Let D be a dcpo. Then Tn is a To topology. •

Theorem 3 [Smy92] Let D 1 = (D1, ¡;;;;1) and D 2 = (D2, ~2) be dcpo's. A function
f : D 1 --+ D 2 is continuous (as partial arder) if, and only ij, f is continuous

topologically. •

109

e:ffectively given domaín was bv
J

topology on
the sets open

T/

[Smy77]

Definition 4 Let D = , ¡;;;;) be a continuous domain, a countable basis. The
(D, B) is an effectively given continuou.s domain, EGCO in if

{ b) E B x B : a « b} is a r. e. set.

In the original definition of effectively gíven domain is an a
\iVS83]. But, using the informal notion of r.e. set 2 as can be found

in [Rog67] we does not need this enumeration sírnplifying the notion of effectlvely
given continuous domain.

is possible also naturally to extend all the constructors on continuous domains
to eífectively given continuous domains. For example, the Cartesian product of the
effectively given continuous domains (D, BD) and (E, BE) is the effectively given
continuous domain (D x E, B D x BE).

The of EGCD brings up discussions on computability. First to the ele-
ments domain and then to the continuous functions between domains.

5 Let (D, B) be an EGCD. An element x E D is computable if {bE
is a r. e. set.

6 Let (D 1 , B1) and (D 2 , B2) be EGCD A continuous function f
is computable if G(f) ={(a, b) E B1 x B2 : b « f(a)} is a r,e. set.

7 {Bed96} Let (D1,B1) and (D2,Bz) be EGCD's, Ijf: D 1 --t D 2 is
a continuous function such that gmph(j) = {(a,b) E B1 x B 2 : b = f(a)} is r.e.

f zs Scott-computable. 11111

In following we will show that our notion of computable funct.ion agrees with
of the Church-Turing-computable function, in the sense that the computability

a function depends on the Church-Turing computability of a functíon between
their respective basis (which are countable),

2 Informally, a set ís recursively enumerable (r.e. in short) if there exists an effective procedure
whích Hsts each element of the set (also it is permited repetitions),

Theorem 8 Let (D1, E1) and (D2, E2) be EGCD's. Ij f : D 1 --+ D 2 is a com
putable functíon then there is a Church- Turing computable monotonic function g :
N x E1 --+ E2 such that f(:r) = U{b E E 2 : g(n, a) = b for some a<< x and n E N}.

PROOF: Define the function g : N x B 1 --+ E 2 as follo-wing g(n, x) = 1r2 (a, b) = b
where (a, b) is the nth pair in the set G(f) such that f(a) « f(x). Since G(f) is a
r.e. set, g is Church-Turing computable. So,

e(x) = U{b E E2: b << f(x)}
= U{b E E2: b << f(.r) for sorne (a, b) E G(f)}
= U{b E E 2 : g(n,x) = b for sorne a« x and n E N}

by def. of base
by def. of G (!)
by def. of g •

Theorem 9 (Eed96} Let (D1. E 1) and (D2, E2) be EGCD's. Ij g : E 1 --+ E 2
is a Church- Turing computable monotonic function then there exists a computable
function such that f(x) = U{g(y): y« x}. •

Clearly, as consequence of this theorem the converse of the theorem 8 holds,
i.e. if g : N x E 1 --+ E 2 is a Church-Turing computable monotonic function then
f(x) = U{g(n, a) : n E N and a << x} is a computable function from D 1 into
D 2 . Thus the computability notion on continuous domains agrees strongly with the
notion of Church-Turing computability, in the sense that computability on contin
uous domains extends the notion of Church-Turing computability to sets with the
continuum cardinality. So, we can generalize the Church thesis to

Generalized Church-Thesis: A function f : A --+ E is computable infor
mally or by a physical device, if and only if there exists EGCD's ((A, C 1), E 1) and
((E, r;;;. 2), E2) such that f is computable in the sense of the definition 6.

4 Computability on the Interval space

The notion of effective procedure is intuitive and not limited to countable sets, while
the notion of computability on Turing machines and partial recursive functions limits
the computable functions to countable ones. The theory of computability on count
able sets is called type 1 computability by Weirhauch ["1ei95) (here called Church
Turing computability) whereas the computability on sets with the cardinality of
continuum is called by him type 2 computability.

The computability on sets with cardinality of the continuum has been more
directioned to computability on the real numbers. Very different approaches have
been used to investigate, from a constructive standpoint, main concepts arising in
analysis such as real numbers. limits, derivatives and measures. Basically there
exist two lines of researches to real computability. In the most accepted of them we

111

computes with approximations of real numbers in arder to obtain approximations
of the output, with arbitrary precision [Gia93, Wei95, Bra95]. In other approachy
seing the reals numbers are seen as finished entities and the computable functions
are generated from a class of basic functions, the most known of the these approaches
is is BSS [BSS89].

For other sets with the cardinality of the continuous, such as complex numbers
and lEn, the computability is derived from real computability. However, any tentative
to extend the real computability for real intervals, denoted by I(lE) = {[r, s] : r E lE
and r ::; s }, will be unnatural. This is so because, the interval extensions of a real
function must preserve the behaviours of the real function to degenerate intervals
(intervals with equal extremes, ídentified with the real numbers). For example, let
f :lEn -----t IR be a function. An interval extension of j, is a function F: I(IR)n -----7

I (IR), which must satisfy the following condition [Moo79]:

F([x1, x1], · · ·, [xn, Xn]) = [f(xl, · · ·, Xn), f(xl, · · ·, Xn)]

So, interval functions such as F ([a, b]) = [a - 1, b + 1] are not interval extensions
of any real function. Therefore, it is not derived from a real computable function.
Clearly "interval extensions" which does not satisfy the Moore condition will be
unsatisfactory (the interval identity function is not considered). So, we can not
get a satísfatory computability theory for interval analysís from real computable
analysis.

In one of his early papers on domain theory, D. Scott [Sco70] suggested that a
cpo consisting of intervals with real numbers as end points, real intervals in short,
could used to study computability on the real numbers. The continuous domain
of real intervals is defined by R = (ll(IR), ¡;;;;) where

~ ll(IR) = {[r, .s] : r, s E IR and T ::; s} U {[-oo, +oo]}

.;; [r, sj ¡;;;; [t, u] if, and only if, T ::; t and u ~ s

with ::; being the usual "lesser or equal" order on the extended real numbers (i.e.
ñi =IR U { -oo, +oo}). Observe that [r, s] ¡;;;; [t, u] if, and only if, [t, u] <;;;; [r, .s]. The
v,ray below relation associated to this continuous domain is defined by

[r, .s] ~ [t, u] if, and only if, r < t and u < s

A countable base for this continuous domain are the rational Le.
set li(Q) = {[p, qJ : p, q E Q and p < q}. Since ll(Q) is r.e. and ~ is clearly decidibk
the set {(I, J) E li(Q) >< ll(Q) : I ~ J} also is r.e. So, (7?-,ll(Q)) is an EGCD and
therefore we have a notion of computable real interval and computability for interval
functíons.

112

or
to I

computable <
Le. chains of

gi ven [NLL , the
the intervals Turing-computable real numbers3

[r, r] where r is Turing-computable.

if

and y be real numbers su eh that x < y.
y are Turing-computable. ~

computable interval functions on
on the Church-Turing

.f : IT(IR) ----+ II(IR) is computable if
function g : JI (ilJI) ----+ JI (ilJI) su eh

f([r,s])= ([p, q]) p < s<

(Jí)iEN,

functions from ll(IR)n to IT(IR) are

functions and functwn4 .

'yj ~S

2 . . fe(==e e E ll(IR)e, i. e. e is a computable inteTval.

([0, jrj,s}]
1 [r, s]l= < [r, s]

l [-s,-r]

, if O E s]
, if O < r

otherwise

. a real number is a real numbers which can be a
Turing m achine [JVJL 70].

the interval di,:ision is not a total function (it is not defined to intervals containing 0),
computable function.

1'13

-4- e:rp [r, s] = [nLin{ eT,

5. log [r, s] = [lag r, log s] 5

6.

}]

if 2Jr :::; s- r

{
[-1,1]

. [minS, 1]
sm[r, s] = [-1, maxS]

[m:inS, maxS]

, if íT :::; s - T < 27r and sin T + s;r- > O
, if íT ::S: s - T < 27r and sin r + s;r < O

otherwise

wheTe S = {sin r, sin s}. item cos [r s] = sin [r ' 7I. s + II.J. tq I = sin I
' 1 2 1 2 ' ~ cos I

sec I = co; I

7. Each polinomial interval function p(x) = a0 + a1x + a2x 2 + · · · +
the ai 's are computable intervals. 11

An example of non computable function is the equality to zero, i.e.
eqO : IT(lR) --+ IT(lR) defined by

O ([l) f [1 , 1] , if [r, s] = [O, O]
eq r, s = l [0, O] h . , ot _erwise

where

function

This is true beca use, trivially, this function is non monotonic, that is [-1, 1] ¡;;;;
[0, O], but eqü([-1, 1]) = [0, O] g eqO([O, O])= [1, 1]. Therefore eqO is non continuous.
So, eqO is non computable. We also could think in {0, 1}, i.e. {[0, O], [1, 1]} as a
domain two element. But independently of how we order them, this function
remains non continuous.

It is a consensus in real computability that each computable function f : JRn --+
Ll;:¡Jn is continuous w.r.t. the Euclidian topology. So, it is reasonable to ask that
our notion computability also be continuous w.r.t. sorne natural topology on
the real interval. In the interval space endowed with the metric topology given
by R. Moore [Moo79] there is computable function which is computable regard to
our sense and the other senses above mencioned but which is not continuous. This
fact is possible because the computability on the metric topology by Moore and
the inclusion monotonicity property are not compatible, i.e. there exists monotonic
function which is not continuous [Moo79]. Still, if we consider de Scott topology
on the continuous domain R the interval monotonic function and the computable
interval functions are continuous.

5 Sin ce the reallogarithms is a function from JR+ (positive realnumbers set) into JR, their interval
version is a function from IT(JR)+ to IT(JR), where IT(JR)+ is the natural subdomain of IT(JR).

114

Theorem 12 Each interval computable function is continuous w.r.t. the
topology on JI (ll~).

PROOF: By de:finition each interval computable function is continuous with regard
to the order. Therefore, by the proposition :3, the interval computable functions
are continuous in the Scott topology. il:ll

5
1l •

onc1us1on

In theory our main contribuition consisted giving a preponderant role for
a countable to show the computability of functions. We saw a function
on sets \Vith carclinality of the continuum ís computable if, and if,
exists a function on respective countable bases 1vhich goes computing finite
aproximations of infinite in such way that in the limit, the function com-
putes the ideal object. This result allows us to introduce a computability notion on
real interval based on the computability on the rational interval, com-

shovl·ed that the interval computability has several desired ,.,~,nn.orr
that a computabilitY theory on interval analysis rnust consideL

to the interval space.
used the established dornain theory in order to introduce a

notion of cornputability on the interval space. But, in the future we vvill can
this theory and to introduce our computability theory on the interval
direct way, i.e. like in equation (1) aboYe.

R~eferences

[Aci91]

[Bed96]

[Bra95]

[BSS89]

[Gia93]

Benedíto Melo Acióly. Computational Foundation of Intervallv!athernat
ics (in portuguese). PhD thesis, CPGCC da UFRGS, Porto -'il""legre, 1991.

Benjamín R Callejas Bedregal. Continuous Information Systems: A
Computational and Logical Approach to Interval Mathematics (in por
tuguese). PhD thesis, UFPE-Depto. de Informática, Recife, 1996.

Vasco Brattka. Recursive Characterization of Computable Real-valued
Functions and Relations. Preprint submitted to Elsiever Science, 1995.

L. Blum, ::vL Shub and S. Smale. On a Theory of Computation and Corn
plexity over Real Nurnber: NP-completness, recursive functions and uni
versal machines. Bull. of the Amer . .:vlath. Soc. 21, 1989, pg. 1-46.

Pietro Di Gianantonio. A Functional Approach to Computability on Real
Numbers. PhD thesis, Universita di Pisa-Genova-Udine, Italy, march
1993.

'115

[Grz57] Grzegorczyk. On the definitions of continuous func-
tions. Fundamenta Mathematicae, 44(1), 1957.

[ML70] Per Martin-Lof. Notes on ConstTuctive Mathematics. Almqvist
Stockholm, 1970.

[Moo79] Ramon E. Moore. Methods and Applications of Interval Analysis. SIAM
Studies in Applied Mathematics, philadelphia, 1979

[Rog67] Hartley Rogers Jr. TheoTy of Recvxsive Functions Effectively Com
putabilíty. McGraw-Hill Book Company, New York, 1967.

[Sco70] Dana Scott. Outline of a 1Vlathematical Theory of Computation. In 4th

annual Princeton Conference on Inf. Science and Systems, pages 65-106,
1970

[Smy77] Myke Smyth. Effectively Given Dornains. Theoretical Computer
pages 257-274, 1977.

[Smy92] Myke Smyth. Topology. S.Abramsky, D.M. Gabbay and T.S.E. Maim-
baum, editors, Handbook of Logic in Computer Science. L
University Press, 1992.

[Vifei95] Klaus vVeihrauch. A simple Introduction to Computable Analysis. Tech
nical Report 171-2/1995, Fern Universitat, 1995.

[\7ifS83] 'vVeihrauch and G. SchAfer. Admissible representations of effective
Theoretical Computer Science, 26:131-147, 1983.

