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Abstract 

The effectively given continuous domains aims characterize the computable 
functions (as opposed to the merely continuous ones) and the computable el
ements of types represented by continuous domains. In this paper we show 
that computability on arbitrary effectively given continuous domain depends 
strongly u pon. the Church-Turing computability ( classical computability on 
countable sets) on a countable base. In order to introduce the notion of com
putability on the interval space we need the concepts of effectively given con
tinuous domain. In this approach, several desired properties of a computable 
interval analysis are obtained. 
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1 Introduction 

Scientific computation is mainly directionated to solutíon of numerical problems. 
Of course convincing theoretical foundations are indispensible for computable anal
ysís. Very different approaches have been used to ínvestigate, from a constructive 
standpoint, concepts arising in real analysis such as real numbers, limits, derivatives 
and measure. An ímportant dífference among these approaches líes in the way real 
numbers are represented [Gia93]. In the notion of computable real functions given 
by Grzegorczyk's in [Grz57] is used the concept of computable operators on the 
set of natural numbers sequences. Thís notion was ínvestigated and generalized by 
[Wei95]. In his approach an approximatíon of the output with arbitrary precísion 
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is computed from a suitable approximation of the input [Bra95]. Another approach 
was developed by Blum, Shub and Smale [BSS89]. Here real numbers are viewed as 
entities and the computable functions are generated from a class of basic functions 
(in a similar way to partial recursive functions). Although each of these approaches 
has its merits, none of them has been accepted by the majority of mathematicians 
or computer scientists. 

Interval Mathematics is the branch of mathematics concerned with techniques 
and methods to compute real objects (like real numbers, real functions, etc .... ), 
mantaining a rigorous analysis of approximation errors. In exact real computation 
instead the result of a computation can be obtained with arbitrary precision, getting 
rid of the unfortunate phenomenon of the "round-off-error" [Gia93]. Using Moore 
interval arithmetic [Moo79] the round-off-error is known. 

Computability on real intervals has not been object of specific studies, perhaps 
because we can derive computability notions on real intervals extending naturally 
the real functions to real interval ones. But, the natural extensions of the real 
computability to real interval computability (for example, those obtained by the 
extensions of real function to real interval functions as given by [Moo79]), beca use 
their behaviour when restrict to the reals numbers is a real function (i.e. sending 
degenera te intervals in degenerate intervals), do not consider severals functions, such 
as f([a, b]) = [a- 1, b + 1], which are naturally computable. So it is necessary one 
defines a computability notion in real interval spaces which does not depend on the 
computabilty on real numbers. 

In this paper, by using the well known domain theory, we will introduce an 
internal notion of computability for interval analysis supporting the computability 
properties which we would like that interval real functions had. For example, it is 
desirable that the interval arithmetic be computable, also each computable function 
be continuous, as well as that this notion of computability extends the computability 
on reals, etc. 

2 Basic Concepts in Domain Theory 

Let D = (D, :S) be a partially ordered set (poset). A set .6. ~ D is called directed 
if each of its finite subset has an upper bound, or equivalently, Va, b E .6. ::le E .6. 
such that a :::; e and b :::; c. A poset D is directed complete ( dcpo for short) if 
each directed set .6. has a least upper bound or supremum (denoted by U .6.) and 
a cpo if it has a least element. We say that a is way below b (denoted by a << b) 
if for every directed set .6. such that b :::; U .6. then a :S x for sorne x E .6.. \Ne let 
tx = {y E D : y~ x P. A dcpo D is called continuous if, for all x E D, the set tx 

1 Analogously, we let tx = {y E D : x « y} 
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is directed and x = U d:x. A set B ~ D is a base of D if for each x E D, t:r n B is a 
clirecte.d set with x = U tx n B. A dcpo is continuous if, and only if, it has a base. 

_-\.n element a E D is compact if a « a. We will .denote the set of all compact 
elements of D by D 0 . A continuous dcpo D is said to be algebraic if D0 is a base. A 
subset of a poset is consistent if it has an upper bound in the poset. A continuous 
dcpo is a continuous domain if it has a countable base and each consistent set has 
a supremum. An algebraic dcpo is a Scott domain if the set of compact élements is 
countable and each consistent set has a supremum. 

Let D t.:Jnd E be dcpo's. _-\. function f : E --+ D is called continuous w.r.t. the 
orders or snnplely continuous if it is monotonic (x :s; y implies j(x)· :s; j(y)) and 
preserves least upper bounds (f(U ~)=U!(~)). . 

A .. n element x of u. poset D is said total if x ¡;;;; y implies that x =y. Let Tot(D) 

denotes the set of total elements of D. 
There are several constructions on continuous domains, such as lifting, Cartesian 

product, function space, etc. Let D = (D, ¡;;;;D) and E = (E, ¡;;;;E) be continuous 
domains. The Cartesian product of D and E is the continuous domain D x E = 

(D x E, C), where (x, y) ¡;;;; (x', Y') if, and only if, .r ¡;;;;D X' and y ¡;;;;p, Y' We will 
abrevia te D x · · · x D by Dn. The function space from D to E is the continuous 
domain D ---+ E = (ED, ¡;;;;) "\Yhere ED is the set of continuous functions from D to 
E and f ¡;;;; g if, and only if, j(x) ¡;;;;E g(x) for each .rE D. 

The partial orders are endowed with a topology, called Scott topology such that 
in sorne sense the notion of continuous function and order coincide. 

Definition 1 Let D = (D, ¡;;;;) be a dcpo. O ~ D is taken as open in the Scott 

topology on D if 

1. x E O and x ~ y then y E O 

2. If ~ ~ D is a directed set and U ~ E O then ~ n O =/= 0 

The Scott topology on dcpo D will be denoted by Tn. 

The idea by defining this topology is as follows: 1) if information x suffices 
to indicate that test O has succeeded, then any greater information is sufficient a 
fortiori; 2) if the limit of a sequence of better ancl better approximations passes 
a test O, then sorne of the approximants already passes. The last requirement is 
connected with the idea that open sets correspond to finitary tests. 

Proposition 2 [Smy92] Let D be a dcpo. Then Tn is a To topology. • 

Theorem 3 [Smy92] Let D 1 = (D1, ¡;;;;1) and D 2 = (D2, ~2) be dcpo's. A function 
f : D 1 --+ D 2 is continuous (as partial arder) if, and only ij, f is continuous 

topologically. • 

109 



e:ffectively given domaín was bv 
J 

topology on 
the sets open 

T/ 

[Smy77] 

Definition 4 Let D = , ¡;;;;) be a continuous domain, a countable basis. The 
(D, B) is an effectively given continuou.s domain, EGCO in if 

{ b) E B x B : a « b} is a r. e. set. 

In the original definition of effectively gíven domain is an a 
\iVS83]. But, using the informal notion of r.e. set 2 as can be found 

in [Rog67] we does not need this enumeration sírnplifying the notion of effectlvely 
given continuous domain. 

is possible also naturally to extend all the constructors on continuous domains 
to eífectively given continuous domains. For example, the Cartesian product of the 
effectively given continuous domains (D, BD) and (E, BE) is the effectively given 
continuous domain (D x E, B D x BE). 

The of EGCD brings up discussions on computability. First to the ele-
ments domain and then to the continuous functions between domains. 

5 Let (D, B) be an EGCD. An element x E D is computable if {bE 
is a r. e. set. 

6 Let (D 1 , B1 ) and (D 2 , B2 ) be EGCD A continuous function f 
is computable if G(f) ={(a, b) E B1 x B2 : b « f(a)} is a r,e. set. 

7 {Bed96} Let (D1,B1 ) and (D2,Bz) be EGCD's, Ijf: D 1 --t D 2 is 
a continuous function such that gmph(j) = {(a,b) E B1 x B 2 : b = f(a)} is r.e. 

f zs Scott-computable. 11111 

In following we will show that our notion of computable funct.ion agrees with 
of the Church-Turing-computable function, in the sense that the computability 

a function depends on the Church-Turing computability of a functíon between 
their respective basis ( which are countable), 

2 Informally, a set ís recursively enumerable (r.e. in short) if there exists an effective procedure 
whích Hsts each element of the set ( also it is permited repetitions), 



Theorem 8 Let (D1, E1) and (D2, E2) be EGCD's. Ij f : D 1 --+ D 2 is a com
putable functíon then there is a Church- Turing computable monotonic function g : 
N x E1 --+ E2 such that f(:r) = U{b E E 2 : g(n, a) = b for some a<< x and n E N}. 

PROOF: Define the function g : N x B 1 --+ E 2 as follo-wing g(n, x) = 1r2 (a, b) = b 
where (a, b) is the nth pair in the set G(f) such that f(a) « f(x). Since G(f) is a 
r.e. set, g is Church-Turing computable. So, 

e(x) = U{b E E2: b << f(x)} 
= U{b E E2: b << f(.r) for sorne (a, b) E G(f)} 
= U{b E E 2 : g(n,x) = b for sorne a« x and n E N} 

by def. of base 
by def. of G (!) 
by def. of g • 

Theorem 9 (Eed96} Let (D1. E 1) and (D2, E2) be EGCD's. Ij g : E 1 --+ E 2 
is a Church- Turing computable monotonic function then there exists a computable 
function such that f(x) = U{g(y): y« x}. • 

Clearly, as consequence of this theorem the converse of the theorem 8 holds, 
i.e. if g : N x E 1 --+ E 2 is a Church-Turing computable monotonic function then 
f(x) = U{g(n, a) : n E N and a << x} is a computable function from D 1 into 
D 2 . Thus the computability notion on continuous domains agrees strongly with the 
notion of Church-Turing computability, in the sense that computability on contin
uous domains extends the notion of Church-Turing computability to sets with the 
continuum cardinality. So, we can generalize the Church thesis to 

Generalized Church-Thesis: A function f : A --+ E is computable infor
mally or by a physical device, if and only if there exists EGCD's ((A, C 1), E 1) and 
((E, r;;;. 2 ), E2 ) such that f is computable in the sense of the definition 6. 

4 Computability on the Interval space 

The notion of effective procedure is intuitive and not limited to countable sets, while 
the notion of computability on Turing machines and partial recursive functions limits 
the computable functions to countable ones. The theory of computability on count
able sets is called type 1 computability by Weirhauch ["1ei95) (here called Church
Turing computability) whereas the computability on sets with the cardinality of 
continuum is called by him type 2 computability. 

The computability on sets with cardinality of the continuum has been more 
directioned to computability on the real numbers. Very different approaches have 
been used to investigate, from a constructive standpoint, main concepts arising in 
analysis such as real numbers. limits, derivatives and measures. Basically there 
exist two lines of researches to real computability. In the most accepted of them we 
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computes with approximations of real numbers in arder to obtain approximations 
of the output, with arbitrary precision [Gia93, Wei95, Bra95]. In other approachy 
seing the reals numbers are seen as finished entities and the computable functions 
are generated from a class of basic functions, the most known of the these approaches 
is is BSS [BSS89]. 

For other sets with the cardinality of the continuous, such as complex numbers 
and lEn, the computability is derived from real computability. However, any tentative 
to extend the real computability for real intervals, denoted by I(lE) = {[r, s] : r E lE 
and r ::; s }, will be unnatural. This is so because, the interval extensions of a real 
function must preserve the behaviours of the real function to degenerate intervals 
(intervals with equal extremes, ídentified with the real numbers). For example, let 
f :lEn -----t IR be a function. An interval extension of j, is a function F: I(IR)n -----7 

I (IR), which must satisfy the following condition [Moo79]: 

F([x1, x1], · · ·, [xn, Xn]) = [f(xl, · · ·, Xn), f(xl, · · ·, Xn)] 

So, interval functions such as F ( [a, b]) = [a - 1, b + 1] are not interval extensions 
of any real function. Therefore, it is not derived from a real computable function. 
Clearly "interval extensions" which does not satisfy the Moore condition will be 
unsatisfactory (the interval identity function is not considered). So, we can not 
get a satísfatory computability theory for interval analysís from real computable 
analysis. 

In one of his early papers on domain theory, D. Scott [Sco70] suggested that a 
cpo consisting of intervals with real numbers as end points, real intervals in short, 
could used to study computability on the real numbers. The continuous domain 
of real intervals is defined by R = (ll(IR), ¡;;;;) where 

~ ll(IR) = {[r, .s] : r, s E IR and T ::; s} U {[-oo, +oo]} 

.;; [r, sj ¡;;;; [t, u] if, and only if, T ::; t and u ~ s 

with ::; being the usual "lesser or equal" order on the extended real numbers (i.e. 
ñi =IR U { -oo, +oo} ). Observe that [r, s] ¡;;;; [t, u] if, and only if, [t, u] <;;;; [r, .s]. The 
v,ray below relation associated to this continuous domain is defined by 

[r, .s] ~ [t, u] if, and only if, r < t and u < s 

A countable base for this continuous domain are the rational Le. 
set li(Q) = {[p, qJ : p, q E Q and p < q}. Since ll(Q) is r.e. and ~ is clearly decidibk 
the set {(I, J) E li(Q) >< ll(Q) : I ~ J} also is r.e. So, (7?-,ll(Q)) is an EGCD and 
therefore we have a notion of computable real interval and computability for interval 
functíons. 
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or 
to I 

computable < 
Le. chains of 

gi ven [NLL , the 
the intervals Turing-computable real numbers3 

[r, r] where r is Turing-computable. 

if 

and y be real numbers su eh that x < y. 
y are Turing-computable. ~ 

computable interval functions on 
on the Church-Turing 

.f : IT(IR) ----+ II(IR) is computable if 
function g : JI ( ilJI) ----+ JI ( ilJI) su eh 

f([r,s])= ([p, q]) p < s< 

(Jí)iEN, 

functions from ll(IR)n to IT(IR) are 

functions and functwn4 . 

'yj ~S 

2 . . fe( ==e e E ll(IR)e, i. e. e is a computable inteTval. 

( [0, jrj,s}] 
1 [r, s]l= < [r, s] 

l [-s,-r] 

, if O E s] 
, if O < r 

otherwise 

. a real number is a real numbers which can be a 
Turing m achine [JVJL 70]. 

the interval di,:ision is not a total function (it is not defined to intervals containing 0), 
computable function. 
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-4- e:rp [r, s] = [nLin{ eT, 

5. log [r, s] = [lag r, log s] 5 

6. 

}] 

if 2Jr :::; s- r 

{ 
[-1,1] 

. [minS, 1] 
sm[r, s] = [-1, maxS] 

[m:inS, maxS] 

, if íT :::; s - T < 27r and sin T + s;r- > O 
, if íT ::S: s - T < 27r and sin r + s;r < O 

otherwise 

wheTe S = {sin r, sin s}. item cos [r s] = sin [r ' 7I. s + II.J. tq I = sin I 
' 1 2 1 2 ' ~ cos I 

sec I = co; I 

7. Each polinomial interval function p(x) = a0 + a1x + a2x 2 + · · · + 
the ai 's are computable intervals. 11 

An example of non computable function is the equality to zero, i.e. 
eqO : IT(lR) --+ IT(lR) defined by 

O ( [ l) f [ 1 , 1] , if [ r, s] = [O, O] 
eq r, s = l [0, O] h . , ot _erwise 

where 

function 

This is true beca use, trivially, this function is non monotonic, that is [ -1, 1] ¡;;;; 
[0, O], but eqü([-1, 1]) = [0, O] g eqO([O, O])= [1, 1]. Therefore eqO is non continuous. 
So, eqO is non computable. We also could think in {0, 1}, i.e. {[0, O], [1, 1]} as a 
domain two element. But independently of how we order them, this function 
remains non continuous. 

It is a consensus in real computability that each computable function f : JRn --+ 
Ll;:¡Jn is continuous w.r.t. the Euclidian topology. So, it is reasonable to ask that 
our notion computability also be continuous w.r.t. sorne natural topology on 
the real interval. In the interval space endowed with the metric topology given 
by R. Moore [Moo79] there is computable function which is computable regard to 
our sense and the other senses above mencioned but which is not continuous. This 
fact is possible because the computability on the metric topology by Moore and 
the inclusion monotonicity property are not compatible, i.e. there exists monotonic 
function which is not continuous [Moo79]. Still, if we consider de Scott topology 
on the continuous domain R the interval monotonic function and the computable 
interval functions are continuous. 

5 Sin ce the reallogarithms is a function from JR+ (positive realnumbers set) into JR, their interval 
version is a function from IT(JR)+ to IT(JR), where IT(JR)+ is the natural subdomain of IT(JR). 
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Theorem 12 Each interval computable function is continuous w.r.t. the 
topology on JI ( ll~). 

PROOF: By de:finition each interval computable function is continuous with regard 
to the order. Therefore, by the proposition :3, the interval computable functions 
are continuous in the Scott topology. il:ll 

5 
1l • 

onc1us1on 

In theory our main contribuition consisted giving a preponderant role for 
a countable to show the computability of functions. We saw a function 
on sets \Vith carclinality of the continuum ís computable if, and if, 
exists a function on respective countable bases 1vhich goes computing finite 
aproximations of infinite in such way that in the limit, the function com-
putes the ideal object. This result allows us to introduce a computability notion on 
real interval based on the computability on the rational interval, com-

shovl·ed that the interval computability has several desired ,.,~,nn.orr 
that a computabilitY theory on interval analysis rnust consideL 

to the interval space. 
used the established dornain theory in order to introduce a 

notion of cornputability on the interval space. But, in the future we vvill can 
this theory and to introduce our computability theory on the interval 
direct way, i.e. like in equation ( 1) aboYe. 
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